**Description**

Machine learning is more and more use in today word, from creating image to weather forcast, passing by creating bots that beat humain in chess game.

**Ft_linear_regression** is a 42 project that introduct you to machine
learning.

You have to predict the price of a car ðŸš— with the km as input.

It let you discover the power of linear regression and gradient descent.

To predict the price of the car you have to use the mathematics formula of linear regression:

You have to use these mathematics fomulars to get both Î¸.

This will give you Î¸0 :

This will give you Î¸1 :

A default dataset is provided

**Explanation**

Machine learning work amost everytime with normalized data.

*A normalized dataset is just a way to set the dataset in a range
that is more easy to work*

**e.g : set all values between 0-1**

You can check more information on Normalize

When your dataset is normalized you can work on it to find Î¸ values.

We will use a gradient descent algorithme to get a more precise value possible of both Î¸.

*Gradient descent is a first-order iterative optimization algorithm
for finding a local minimum of a differentiable function.*

For more information on Gradient descent

We will iterate n number of time over the values in the dataset, to calculate the derivation.

When you subtract the derivation to the actual values in the dataset, you get the loss.

With this loss you can ajust the learning rate in the next iteration and try to optimise the values of both Î¸, to get the smaller loss.

After some iteration, you will see that the values of both Î¸ and the loss will stabilise.